
Software Engineering

and Architecture

REpresentational State Transfer

What is REST

CS@AU Henrik Bærbak Christensen 2

One of the rare cases, in which a PhD dissertation
actually moved IT industry a lot!

What is REST

• As a software architect, I see it as an

– Architectural style / pattern

• It is another programming model

– Functional programming:

• Computation is passing data through chains of functions

– Object programming:

• Computation is community of objects passing messages

– RPC over Client-Server:

• Computation is clients invoking procedures on remote servers

– REST

• Computation is clients manipulating resources using CRUD ops and

moving through states using hypermedia links

CS@AU Henrik Bærbak Christensen 3

Programming Model

• Broker pattern

– Supports RPC/RMI between clients and servers

• State changes through accessors and mutator methods

• Any interface is possible

• REST

– Supports only CRUD on remote resources (=Data objects)

– Supports workflow through hypermedia links

• Very different programming model required

compared to Remote Method Invocation/Broker

• Not all systems are suited for REST !
CS@AU Henrik Bærbak Christensen 4

Roy Fielding’s work

• Goal: Keep the scalable hypermedia properties of WWW

• REST = REpresentational State Transfer

– Transferring a representation of data in a format matching one of

standard data types (media types)

– Resource: any information that can be named

– Identified by a resource identifier

• URI = Uniform Resource Identifier

– Interactions are stateless

• Each request contains all the information necessary

CS@AU Henrik Bærbak Christensen 5

Exercise: Why is everybody so keen on ‘stateless’? What QA is involved?

Representing Resources

Example

• Resource: Inger’s blood pressure measured on

29/6/2017

• Representation of data using standard media type:

– { pid: ”251248-1234”, sys: 120.0, dia:70.0 } (json)

• Resource identifier

– http://telemed.org/bp/251248-1234/made-29-06-2017-09-59-17

– I.e. Inger’s resource (her blood pressure measurement) is

uniquely identified using this URI

CS@AU Henrik Bærbak Christensen 7

Example: CRUD

• Inger makes the measurement CREATE

• POST /bp

– Body: { pid: ”251248-1234”, sys: 120.0, dia:70.0 }

• Response

– StatusCode: 201 CREATED

– Location: /bp/251248-1234/made-29-06-2017-09-59-17

– Body: { pid: ”251248-1234”, sys: 120.0, dia:70.0, status: ”new” }

• Meaning

– The resources was created, has resource id

• /bp/251248-1234/made-29-06-2017-09-59-17

CS@AU Henrik Bærbak Christensen 8

Example: CRUD

• Inger reviews the measurement READ

• GET /bp/251248-1234/made-29-06-2017-09-59-17

– Body: (none)

• Response

– StatusCode: 200 OK

– Body: { pid: ”251248-1234”, sys: 120.0, dia:70.0, status=”new” }

• Meaning

– The resources was found, and the measurement returned

CS@AU Henrik Bærbak Christensen 9

Example: CRUD

• Inger updates the measurement UPDATE

• PUT /bp/251248-1234/made-29-06-2017-09-59-17

– Body: { pid: ”251248-1234”, sys: 126.0, dia:69.0 }

• Response

– StatusCode: 201 CREATED

– Body: { pid: ”251248-1234”, sys: 126.0, dia:69.0, status=”revised” }

• Meaning

– The resources was found, and the measurement updated

CS@AU Henrik Bærbak Christensen 10

Example: CRUD

• Inger deletes the measurement DELETE

• DELETE /bp/251248-1234/made-29-06-2017-09-59-17

– Body: (none)

• Response

– StatusCode: 204 No Content

– Body: none

• Meaning

– The resources was found, and the measurement deleted

CS@AU Henrik Bærbak Christensen 11

Prototype: pastebin

• REST is pretty lightweight programming wise…

– Goal: AP to demonstrate ”pastebin”

• Online service for storing text messages = ‘post-its’

– Total time: 1.5 hour (well – a bit cheating)

• Developed

– Webserver, accepting POST and GET

• Using Spark-java framework (IPC) and GSON (Marshaling)

– Client: curl or httpie ☺

CS@AU Henrik Bærbak Christensen 12

Demo

CS@AU Henrik Bærbak Christensen 13

CREATE fisk and hest
READ 100, 101, 102

Or Curl…

• POST ‘Fisk’,

‘Hest’ and

‘Elefant’ in bins

• Assigned bin

100, 101, 102

• GET bin 101

• Which is ‘Hest’

• GET bin 117

• Which is not

found (404)

CS@AU Henrik Bærbak Christensen 14

Note

• POST of course needs to tell client the resource identifier

of the newly created object!

– Response contains a ‘Location’ field

• Standard way for POST communicate ‘resource id’

CS@AU Henrik Bærbak Christensen 15

Server code

• A PasteBin server in 50 lines of Java
– OK, Spark-java helps quite a bit!

CS@AU Henrik Bærbak Christensen 16

Is in the ‘FRDS.Broker’
codebase, as an isolated

project. (You have to
change to the pastebin
folder to make it work)

Left as an Exercise

• We should be able to update a text in pastebin

– PUT verb

• And delete an entry

– DELETE verb

CS@AU Henrik Bærbak Christensen 17

Discussion

• REST uses the HTTP as designed

– CRUD verbs and Status Codes (methods, return type)

• Virtually allows all Information Systems operations !

– URLs as resource identifiers (location+object)

• Always identify the same resource, and representation of state is

always communicated

– Well defined data representations (media types)

• JSON has become favorite (readable + small footprint)

CS@AU Henrik Bærbak Christensen 18

Richardson’s Maturity model

• From low maturity to high maturity

– URI Tunnel

• Just use HTTP as IPC layer

– SOAP, WSDL, WebServices

– And our URI Tunnel Broker!

– HTTP

• Use CRUD Verbs on resources

– Hypermedia

• Use links to define workflows

CS@AU Henrik Bærbak Christensen 19

URI Tunnel

HTTP

Hypermedia

Level 2 REST

Workflow

• Business systems can often be modelled as workflows

– CS term: State machines / state graphs ☺

• Ex: Book a flight

– I search for flights available get list of links

– I pick one particular flight get ‘book’ link

– I book the flight enter personal details

– I pay for the flight enter credit card details

– I get a) e-ticket b) receipt get two links

CS@AU Henrik Bærbak Christensen 21

Exercise

• I search for flights

– What HTTP verb is that? What resources are involved?

• I book the flight

– What HTTP verb is that? What resources are involved?

• I pay for the flight

– What HTTP verb is that? What resources are involved?

• I get my e-ticket

– What HTTP verb is that? What resources are involved?

CS@AU Henrik Bærbak Christensen 22

Level 2: Hypermedia

• Workflows are not just ‘CRUD a resource’, rather more

complex

– Transactions: Multiple entities atomically updated

– State transitions: Mutator methods

that updates several entities and/or

updates state

– Ex: A game’s move(f,t) method

• Validate move (may return ‘not valid’)

• Update board state

(transaction, e.g. king castling)

CS@AU Henrik Bærbak Christensen 23

Analysis

• ‘move()’ using HTTP verbs ???

– Is it possible at all?

• Analysis A:

– ”No, we cannot do that”

• Because ‘move’ is not a create, it is not a read, nor update, nor

delete of a single resource (stateless)

CS@AU Henrik Bærbak Christensen 24

Analysis

• ‘move()’ using HTTP verbs

• Analysis B: Maybe it is an update of game

– PUT /game/47

– Body: Full board state with the move executed

• But – then the server has to infer the move from the delta between

state ‘before’ and state ‘after’ which is weird!

– And it is definitely not stateless – right?

CS@AU Henrik Bærbak Christensen 25

Analysis

• Analysis C: A ‘state transition resource’

– Creating a game, is creation of two resources

• The game resource /game/47/

• The move resource /game/47/move or /game/move/47

– PUT /game/47/move

– Body: { from: e2, to: e4, player:white}

• This will

– Try to UPDATE the state => 200 OK or 401 Invalid

– If 200 OK, then the game resource is also updated

• And can be successively GET to see new board state

CS@AU Henrik Bærbak Christensen 26

Challenge

• But how do we return two resources from the game

create POST message?

– We can not, but we can use the WWW way – provide hypermedia

links!!!

boardState: [...],

CS@AU Henrik Bærbak Christensen 27

Aka

• HATEOAS:

– Hypermedia As The Engine Of Application State.

• Application state changes are modelled as hypermedia

links, each to a resource that objectify the change itself,

not the old/new state of underlying objects

– A ‘move’ resource, a ‘payment’ resource, a ‘send items to

address’ resource, etc.

CS@AU Henrik Bærbak Christensen 28

Often visible in UI

• The state changes of the order

CS@AU Henrik Bærbak Christensen 29

Level 2: Hypermedia

• So – REST is a radically different

architectural pattern/style, different from

OO and interface-based paradigms

• POST to create a resource

– May return several hypermedia links that

define valid state transitions for the

resource

• Which are then manipulated through the

HTTP verbs

– Makes potential state transitions

discoverable

• Just like any new web page presents links

that I may follow

CS@AU Henrik Bærbak Christensen 30

URI Tunnel

HTTP

Hypermedia

Example 1

Strong inspiration from:

”How to GET a cup of Coffee”

By Webber et al.

CS@AU Henrik Bærbak Christensen 31

Context

• Webber et al.’s paper outline the full Hypermedia

approach for building REST based systems

• We will take an alternative/simpler route

– We will keep using JSON, instead of XML

– We will encode the statemachine in the code base instead of

coding it like links in the XML (‘next’ in webber’s paper)

• They need to code logic to interpret ‘next’ tag anyway so our binding

is not that much harder than what Webber presents.

CS@AU Henrik Bærbak Christensen 32

Coffee Shop

• A web shop for ordering coffee – and paying…

CS@AU Henrik Bærbak Christensen 33

Example: Story 1 (Coffee order)

CS@AU Henrik Bærbak Christensen 34

POST on /order

GET on /order/{id}

Coffee Shop

CS@AU Henrik Bærbak Christensen 35

Example: Story 3 (Coffee Payment)

• Another object /payment/order/{id} is also created

• Payment becomes updating this object!

• And a new get shows the state change of the order

CS@AU Henrik Bærbak Christensen 36

PUT on /payment/order/{id}

Example: Story 3 (Coffee Payment)

• In Webber et al.’s paper, the XML will provide the

payment resource id as ‘next’ tags

– The hypermedia approach:

• Provide the client with multiple options to move to new info/actions

through providing links

• I just ‘agreed’ on the resource path in the code base…

CS@AU Henrik Bærbak Christensen 37

PUT on /payment/order

Example 2

GameLobby

• Joining a Game result in

a game ressource

to be CRUD’ed

CS@AU Henrik Bærbak Christensen 39

Read the book ☺

REST versus Broker

Pros And Cons

Rest or Broker

• REST is the better choice because

– In 2020 it is much more widely used than Broker architectures

– REST promises scalability, performance, reliability

– Lighter and direct programming model (contrast SOAP/WSDL)

– Direct interaction (manual test) via ‘http’ or ‘curl’

• REST is the lesser choice because

– Programming model is at low abstraction level

– All responsibilities are mixed together = Blob antipattern

– HATEAOS even mixes UI responsibilities into domain   

• ‘links’ are part of the domain object

– Not just a coffee order but coffee order + URL links to state changes

CS@AU Henrik Bærbak Christensen 41

Mixed Responsibilities

• Broker separate distinct responsibilities

– Domain layer, marshalling layer, IPC layer

• REST actually addresses

responsibilities on both the

Marshalling, Location, and

IPC level in one big ball of

mud

– Low cohesion 

CS@AU Henrik Bærbak Christensen 42

Mixing UI State and Domain

• From Webber’s CoffeeShop

• Domain object

– An Order

• UI/State object

– Links that are URL encoded mixed into the ‘ball of mud’

• Demarshalling becomes tedious

CS@AU Henrik Bærbak Christensen 43

Both pull the same way 

• Spaghetti code // Big ball of mud

– Look for Brian Foote and Joseph Yoder’s paper

CS@AU Henrik Bærbak Christensen 44

Ex: TeleMedRESTProxy

• Using a good REST library

(here: uni-rest), the code is

small …

• This Proxy plays all roles

– Proxy

– Requestor (GSON)

– ClientReqH. (UniRest)

• Location field read to

retrieve ID of resource

CS@AU Henrik Bærbak Christensen 45

Restating my Claim

• Broker Pattern is as strong as REST iff

– You simply obey the same fundamental architectural constraints

as REST impose

• Only pass-by-value

– Use the ‘pass objectId’ technique for server -> client ‘pass by reference’

• Pure client-server - no server calling methods on clients

– Design your Remote Roles with distribution in mind

• Not ‘game.getUnitAt(p)’ Chatty interface

• But ‘game.getFullGameState()’ Chunky interface

CS@AU Henrik Bærbak Christensen 46

Summary

• UR Tunnelling
– Just uses HTTP and web technology/frameworks as the IPC layer in the Broker

• That is : transport network packages to/from client and server

• REST

– Architectural Pattern what deeply exploits HTTPs advantages

– Lightweight with less tool support

– Focus is on performance and scalability because

• True Client-server No callback/observer pattern

• Value passing of information

CS@AU Henrik Bærbak Christensen 47

Summary

• Broker pattern and REST?

– Only if the OO interfaces/roles are designed so they adhere to

the REST way of architecture

• CRUD on ‘objects’ = resources

• State transitions modelled as ‘transition resources’

– Bit similar to Command pattern objects…

– … and generally you do not design OO that way…

• REST and OO are two different architectural styles…

CS@AU Henrik Bærbak Christensen 48

