/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

REpresentational State Transfer

eV What is REST

AARHUS UNIVERSITET

Representational state transfer (REST) is a software architectural style that was created to guide the design and development of the
architecture for the World Wide Web. REST defines a set of constraints for how the architecture of an Internet-scale distributed hypermedia
system, such as the Web, should behave. The REST architectural style emphasises the scalability of interactions between components,
uniform interfaces, independent deployment of components, and the creation of a layered architecture to facilitate caching components to
reduce user-perceived latency, enforce security, and encapsulate legacy systems. ']

REST has been employed throughout the software industry and is a widely accepted set of guidelines for creating stateless, reliable web
APls. A web AP that obeys the REST constraints is informally described as RESTful. RESTiul web APIs are typically loosely based on HTTP
methods to access resources via URL-encoded parameters and the use of JSON or XML to transmit data.

CHAPTER 5

Representational State Transfer (REST)

CS@AU Henrik Baerbak Christensen

V4V What is REST

AARHUS UNIVERSITET

 As a software architect, | see it as an
— Architectural style / pattern

 Itis another programming model
— Functional programming:
« Computation is passing data through chains of functions
— Object programming:
« Computation is community of objects passing messages
— RPC over Client-Server:
« Computation is clients invoking procedures on remote servers
— REST

« Computation is clients manipulating resources using CRUD ops and
moving through states using hypermedia links

/v Programming Model

AARHUS UNIVERSITET

« Broker pattern

— Supports RPC/RMI between clients and servers
« State changes through accessors and mutator methods
« Any interface is possible

* REST

— Supports only CRUD on remote resources (=Data objects)
— Supports workflow through hypermedia links

CS@AU Henrik Beerbak Christensen 4

/v Roy Fielding’s work

AARHUS UNIVERSITET
« Goal: Keep the scalable hypermedia properties of WWW
« REST = REpresentational State Transfer

— Transferring a“in a format matching one of
types (media types

standard data

— ldentified by a resource identifier
« URI = Uniform Resource Identifier

« Each request contains all the information necessary

Exercise: Why is everybody so keen on ‘stateless’? What QA is involved?

CS@AU Henrik Baerbak Christensen 5

/v

AARHUS UNIVERSITET

Representing Resources

/v Example

AARHUS UNIVERSITET

 Resource: Inger’s blood pressure measured on
29/6/2017

* Representation of data using standard media type:
— { pid: "251248-1234", sys: 120.0, dia:70.0 } (ison)

* Resource identifier
— http://telemed.org/bp/251248-1234/made-29-06-2017-09-59-17

— l.e. Inger’s resource (her blood pressure measurement) is
uniquely identified using this URI

CS@AU Henrik Baerbak Christensen 7

/v Example: CRUD

AARHUS UNIVERSITET
* Inger makes the measurement CREATE
« POST /bp
— Body: { pid: "251248-1234", sys: 120.0, dia:70.0 }
 Response

— StatusCode: 201 CREATED
— Location: /bp/251248-1234/made-29-06-2017-09-59-17
— Body: { pid: "251248-1234", sys: 120.0, dia:70.0, status: "new” }

 Meaning
— The resources was created, has resource id
» /bp/251248-1234/made-29-06-2017-09-59-17

CS@AU Henrik Baerbak Christensen 8

/v Example: CRUD

AARHUS UNIVERSITET
* Inger reviews the measurement READ
 GET /bp/251248-1234/made-29-06-2017-09-59-17

— Body: (none)
 Response

— StatusCode: 200 OK
— Body: { pid: "251248-1234", sys: 120.0, dia:70.0, status="new” }

 Meaning
— The resources was found, and the measurement returned

CS@AU Henrik Baerbak Christensen 9

/v Example: CRUD

AARHUS UNIVERSITET
* Inger updates the measurement UPDATE
 PUT /bp/251248-1234/made-29-06-2017-09-59-17

— Body: { pid: "251248-1234", sys: 126.0, dia:69.0 }

 Response
— StatusCode: 201 CREATED
— Body: { pid: "251248-1234", sys: 126.0, dia:69.0, status="revised” }

 Meaning
— The resources was found, and the measurement updated

CS@AU Henrik Baerbak Christensen 10

/v Example: CRUD

AARHUS UNIVERSITET
* Inger deletes the measurement DELETE
« DELETE /bp/251248-1234/made-29-06-2017-09-59-17
— Body: (none)
 Response

— StatusCode: 204 No Content
— Body: none

 Meaning
— The resources was found, and the measurement deleted

CS@AU Henrik Baerbak Christensen 11

V4V Prototype: pastebin

AARHUS UNIVERSITET
« REST is pretty lightweight programming wise...

— Goal: AP to demonstrate "pastebin”
* Online service for storing text messages = ‘post-its’

— Total time: 1.5 hour (well — a bit cheating)

« Developed

— Webserver, accepting POST and GET
» Using Spark-java framework (IPC) and GSON (Marshaling)

— Client: curl or httpie ©

Vav Demo

AARHUS UNIVERSITET

p POST localhost:4567/bin c s=Tisk CREATE fisk and hest
READ 100, 101, 102

csdev@mbl:-$ http localhost:4567/bin/101

csdev@mbl:-$ http localhost:4567/bin/100

csdev@m51: -5 +

Henrik Baerbak Christensen

dD D
saip@SaipDev:~/dev/saip-f16-1lab/restbing curl -i -X POST -d '{"contents":"Fisk"}' localhost:4567/hin
HTTP/1.1 281 Created
Bate: Tue, 10 May 2016 06:34:22 GMT
Location: localhost:4567/bin/16@
Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(9.3.2.v201508730)

{"contents":"Fisk"}saip@SaipDev:~/dev/saip-f16-lab/restbin$

salp@SaipDev:~/dev/saip-fl6-lab/restbin$ curl -i -X POST -d '{"contents":"Hest"}' localhost:4567/bin
HTTP/1.1 281 Created

Date: Tue, 10 May 2016 06:35:11 GMT

Location: localhost:4567/bin/101

Content-Type: application/]son

Transfer-Encoding: chunked

Server: Jetty(9.3.2.v20158730)

{"contents":"Hest"}saip@SaipDev:~/dev/saip-fl6-lab/restbin$ curl -i -X POST -d '{"contents":"Hest"}' localhost:
curl -i -X POST -d '{"contents":"Elefant"}' localhost:4567/bin

HTTP/1.1 281 Created

Date: Tue, 10 May 2016 06:35:34 GMT

Location: localhost:4567/bin/182

Content-Type: application/json

Transfer-Encoding: chunked

Server: Jetty(9.3.2.v20150730)

{"contents":"Elefant"}saip@SaipDev:~/dev/saip-f16-lab/restbin$ curl -i -X POST -d '{"contents":"Elefant"}' loca
Fisk567/bin

saip@SaipDev:~/dev/saip-f16-lab/restbin$ gurl i localhoet 4967 /bin/107

HTTP/1.1 200 OK

[Date: Tue, 10 May 2016 06:35:58 GMT

Content-Type: application/json

Transfer-Encoding: chunked

Server: Jetty(9.3.2.v201508730)

"contents":"Hest"}saip@SaipDev:~/dev/saip-fl6-lab/restbin$ curl -i localhost:4567/bin/117
HITP/1.1 4684 Not Found
Date: Tue, 10 May 2016 06:36:02 GMT
Content-Type: application/json
Transfer-Encoding: chunked
Server: Jetty(9.3.2.v28158730)

nullsaip@SaipDev:~/dev/saip-f16-lab/restbing

VeV Note

AARHUS UNIVERSITET
e POST of course needs to tell client the resource identifier

of the newly created object!

— Response contains a ‘Location’ field
« Standard way for POST communicate ‘resource id’

E saip@SaipDev: ~fdev/saip-F16-lab/restbin - + x

File Edit Tabs Help

saip@SaipDev:~/dev/saip-f16-lab/restbin$ curl -i -X POST -d '{"contents":"Fisk"}' localhost:4567/bin
HTTP/1.1 281 Created

Date: Tue, 10 May 2016 06:34:22 GMT

Location: localhost:4567/bin/108

Content-Type: application/json

Transfer-Encoding: chunked

Server: Jetty(9.3.2.v20150730)

{"contents":"Fisk"}saip@saipDev:~/dev/saip-fl6-lab/restbing

CS@AU Henrik Baerbak Christensen 15

public Server() {
J,-’xse

POST /bin. Create 2 new kin, if success, receive a Location header

specifying the bin's resource identifier. E ;e rV er C O d e

Parameter: red.body must be J50N such as {"contents"™
"Suzy's telephone no i=s 1234™}

O

*f
post ("/kEin", (req, res) -> {
// Conwvert from JSOM into object format

Bin g = gson.fromJson (req.body(), Bin.class); hd A PaSteBin Server in 50 |ines Of \Java
// Create a new resource ID — OK, Spark-java helps quite a bit!

String idasString = ""+id++;

// Store bin in the database
db.put (idAsString, q):

S/ 201 Created
res.status (HttpServletResponsze.5C CREATED) ;

/{ Location = URL of created resource
res.header ("Location™, reg.host()+"/bin/"+idasScring):;

// Return the constructed bin
return g

1, jmon()) s Is in the ‘FRDS.Broker’

J.-’xx
GET /bin/<id». Get the bin with the given id
xf

gec("/pin/iian, (req, res) -> ¢ project. (You have to

// Extract the bin id from the request

String id = req.params(":id"); change to the pastebin
// Lookup, and return if found folder to ma ke it Work)

Bin bin = db.get (id);
if (bin '= null)} { return bin; }

codebase, as an isolated

/{ Otherwise, return error
res.status (HeepServletResponse . 5C_NOT_FOUND) ;

return null;
}, dsoni()):

// Set all response types to JSCN
after(ireqg, res) -> {
res.type ("application/j=zon"™);

1 erbak Christensen 16

eV Left as an Exercise

AARHUS UNIVERSITET

* We should be able to update a text in pastebin
— PUT verb

 And delete an entry
— DELETE verb

eV Discussion

AARHUS UNIVERSITET

« REST usesthe HTTP as designed

— CRUD verbs and Status Codes (methods, return type)
 Virtually allows all Information Systems operations !

— URLSs as resource identifiers (location+object)

« Always identify the same resource, and representation of state is
always communicated

— Well defined data representations (media types)
« JSON has become favorite (readable + small footprint)

/v Richardson’s Maturity model

AARHUS UNIVERSITET

* From low maturity to high maturity

— URI Tunnel

« Justuse HTTP as IPC layer
— SOAP, WSDL, WebServices .
— And our URI Tunnel Broker! Hypermedia
— HTTP

 Use CRUD Verbs on resources

URI Tunnel

— Hypermedia
* Use links to define workflows

CS@AU Henrik Beerbak Christensen 19

/v

AARHUS UNIVERSITET

Level 2 REST

/v

AARHUS UNIVERSITET

« Business systems can often be modelled as workflows
— CS term: State machines / state graphs ©

« EX: Book a flight

— | search for flights available

| pick one particular flight
| book the flight

| pay for the flight

| get a) e-ticket b) receipt

Workflow

get list of links

get ‘book’ link

enter personal details
enter credit card details
get two links

eV Exercise

AARHUS UNIVERSITET

» | search for flights
— What HTTP verb is that? What resources are involved?

* | book the flight

— What HTTP verb is that? What resources are involved?

« | pay for the flight

— What HTTP verb is that? What resources are involved?
* | get my e-ticket

— What HTTP verb is that? What resources are involved?

/v Level 2: Hypermedia

AARHUS UNIVERSITET
« Workflows are not just ‘CRUD a resource’, rather more
complex
— Transactions: Multiple entities atomically updated
— itions: th
otpnes o s M e el
P annnnnnr
updates state 6
)
— Ex: A game’s move(f,t) method 4 B _
« Validate move (may return ‘not valid’) .
« Update board state PAMSAAIAIAA I8
(transaction, e.g. king castling) 1 % %3 % %’7 % ‘%’ QG) %

nnnnnnnnnnnnnnnn

CS@AU Henrik Baerbak Christensen 23

/v Analysis

AARHUS UNIVERSITET
* ‘move() using HTTP verbs ???
— Is it possible at all?

* Analysis A:
— "No, we cannot do that”

« Because ‘move’ is not a create, it is not a read, nor update, nor
delete of a single resource (stateless)

CS@AU Henrik Baerbak Christensen 24

/v Analysis

AARHUS UNIVERSITET
* ‘move() using HTTP verbs

« Analysis B: Maybe it Is an update of game
— PUT /game/47

— Body: Full board state with the move executed

 But — then the server has to infer the move from the delta between
state ‘before’ and state ‘after’ which is weird!

— And it is definitely not stateless — right?

/v Analysis

AARHUS UNIVERSITET

* Analysis C: A ‘state transition resource’
— Creating a game, is creation of two resources

 The game resource /game/47/
« The move resource /game/47/move or /[game/move/47
— PUT /game/47/move
— Body: { from: e2, to: e4, player:white}
* This will

— Try to UPDATE the state => 200 OK or 401 Invalid

— If 200 OK, then the game resource is also updated
« And can be successively GET to see new board state

/v

AARHUS UNIVERSITET

Challenge

« But how do we return two resources from the game
create POST message?

— We can not, but we can use the WWW way — provide hypermedia
links!!

playerOne: Pedersen,
playerTwo: Findus,

boardState: [...],

playerInTurn: Pedersen

I next: /lobby/game/move/{game-id}] I

CS@AU Henrik Baerbak Christensen 27

/v Aka

AARHUS UNIVERSITET

« HATEOAS:
— Hypermedia As The Engine Of Application State.

« Application state changes are modelled as hypermedia
links, each to a resource that objectify the change itself,
not the old/new state of underlying objects

— A ‘move’ resource, a ‘payment’ resource, a ‘send items to
address’ resource, etc.

Vav Often visible in Ul

AARHUS UNIVERSITET
« The state changes of the order

(Tibage Fakturaadresse

1. 2. Fakturaadresse

Fakturaadresse Aktuel kurv Rediger
THnr. * Email * 1X mx master 25 wireless Mouse,
Graphite (910-005139)
Lager 648,01
Firmanavn®* Gentag email *

Fri fragt med GLS

o ran

CS@AU Henrik Baerbak Christensen 29

/v Level 2: Hypermedia

AARHUS UNIVERSITET

« S0 — REST is a radically different
architectural pattern/style, different from
OO and interface-based paradigms

e POST to create a resource

define valid state transitions for the

— May return several hypermedia links that /\

resource

* Which are then manipulated through the
HTTP verbs

Hypermedia

— Makes potential state transitions
discoverable

« Just like any new web page presents links URI Tunnel
that | may follow

CS@AU Henrik Beerbak Christensen 30

/v

AARHUS UNIVERSITET

CS@AU

Example 1

Strong inspiration from:
"How to GET a cup of Coffee”
By Webber et al.

Henrik Baerbak Christensen

31

V4V Context

AARHUS UNIVERSITET

« Webber et al.’s paper outline the full Hypermedia
approach for building REST based systems

« We will take an alternative/simpler route
— We will keep using JSON, instead of XML

— We will encode the statemachine in the code base instead of
coding it like links in the XML (‘next’ in webber’s paper)

« They need to code logic to interpret ‘next’ tag anyway so our binding
Is not that much harder than what Webber presents.

Y Coffee Shop

AARHUS UNIVERSITET
* A web shop for ordering coffee — and paying...

CS@AU Henrik Baerbak Christensen 33

/v Example: Story 1 (Coffee order)

AARHUS UNIVERSITET

csdevidml:~/proj/f yroject ffee y$ http POST localhost:4567/order drink=latte

POST on /order

csdev@ml:~/proj/frsproject ffee % http GET localhost:4567/order/100

GET on /order/{id}

CS@AU Henrik Baerbak Christensen 34

Y Coffee Shop

AARHUS UNIVERSITET

N Pickup . Drink L
Paid Noostasd —’© Drink

csdev@ml:~/proj/frsproje

CS@AU Henrik Baerbak Christensen 35

/VExampIe: Story 3 (Coffee Payment)

AARHUS UNIVERSITET

l e Another ob'|ect /Eaxment/order/jidtis also created]

 Payment becomes updating this object!

csdev@ml:~/proj/frsproject/coffeeshop$ http PUT localhost:4567/payment/order/180 cardno=1234 amount=3.00

PUT on /payment/order/{id}

« And a new get shows the state change of the order

csdev@ml:~/proj/frsproject/coffeeshop$ http GET localhost:4567/order/100

CS@AU 36

/VExampIe Story 3 (Coffee Payment)

AARHUS UNIVERSITET

* In Webber et al.’s paper, the XML will provide the
payment resource id as ‘next’ tags

— The hypermedia approach:

* Provide the client with multiple options to move to new info/actions
through providing links

o | jUSt agreed on the resource path In the code base..

sdevi@ml:~/proj -sproject/coffee p$ http PUT localhost:4567/payment/order/180 cardno=1234 amount=3.08

PUT on /payment/order

CS@AU Henrik Baerbak Christensen 37

/v

AARHUS UNIVERSITET

Example 2

/v

AARHUS UNIVERSITET
e Joining a Game result in

1 Join A Game

2 S

_ PUT /lobby/{future game id) to be CRU D’ed

{
1

1@ Response

11 Status: 200 0K

12

13 {

14 playerOne: Pedersen,
15 playerTwo: Findus,
16 level: @,

17 available: true,

22 (none)

CS@AU

playerTwo: Findus

18 next: /lobby/game/{game-id}
19 }
20

: 404 Not Found

a Jame ressource

Read the book ©

Henrik Baerbak Christensen

GamelLobby

Flexible, Reliable,
Distributed Software

Still Using Patterns and
Agile Development

Henrik Beerbak Christensen

39

/v

AARHUS UNIVERSITET

REST versus Broker

Pros And Cons

V4V Rest or Broker

AARHUS UNIVERSITET

 REST Is the better choice because
— In 2020 it is much more widely used than Broker architectures
— REST promises scalability, performance, reliability
— Lighter and direct programming model (contrast SOAP/WSDL)
— Direct interaction (manual test) via ‘http’ or ‘curl’

« REST is the lesser choice because
— Programming model is at low abstraction level
— All responsibilities are mixed together = Blob antipattern

— HATEAQOS even mixes Ul responsibilities into domain ® ® ®

 ‘links’ are part of the domain object
— Not just a coffee order but coffee order + URL links to state changes

/v Mixed Responsibilities

AARHUS UNIVERSITET

« Broker separate distinct responsibilities
— Domain layer, marshalling layer, IPC layer

| «interface» _
Role :

Server side

« REST actually addresses e
responsibilities on both the rne N
Marshalling, Location, and
IPC level in one big ball of
mud
— Low cohesion &

\[/ marshalls call

Requestor Marshflling Invoker ‘

request(location, objectld,
operationld, arguments)

handleRequest(objectid,
operationld, byte[])

receives on network

+| sends on network

ClientRequestHandler ServerRequestHandler

send(address, byte[]) ‘ byte[] receive()

L ,"’ ’
IPC 12
Library

CS@AU Henrik Baerbak Christensen 42

/v Mixing Ul State and Domain

AARHUS UNIVERSITET
 From Webber’s CoffeeShop

200 ©OK

Location: http://starbucks.example.com/order/12234
Content-Type: application/=ml

Content-Length: ...

. . .
Domal n ObJeCt <order xmlns="http://starbucks.example.org/">

<drink>latte</drink>

—_ An Order < <additions>shot</additions>
<cost>4.00</cost>
<next xmlns="http://example.org/state-machine"

rel="http://starbucks.example.org/payment"
uri="https://starbucks.example.com/payment/order/1224"
. / type="application/xml"/>
« Ul/State object </order>

— Links that are URL encoded mixed into the ‘ball of mud’

« Demarshalling becomes tedious

CS@AU Henrik Baerbak Christensen

43

/v Both pull the same way ®

AARHUS UNIVERSITET
« Spaghetti code // Big ball of mud

— Look for Brian Foote and Joseph Yoder’s paper

BIG BALL OF MUD

CS@AU Henrik Baerbak Christensen 44

- Ex: TeleMedRESTProxy

AARHUS UNIVERSITET

public class TeleMedRESTProxy implements TeleMed {

« Using a good REST library

private Gson gson;

public TeleMedRESTProxy(String hostname, int port) { (here: uni-reSt)1 the COde iS

ba=eURL = "http://"+hostname+": "+porc+"/";

gson = new Gsoni); Sma”]
S— hi I Il rol
p'al‘zrizzlsi:’i:g processAndStore (TeleCbservation telelCbs) { * T IS Proxy p ayS a rO eS

String payload = gson.todson(teleCbs):;
HttpResponse<Jsonllode> jsonResponse = null; —_ Proxy
eey 1 — Requestor (GSON)
jsonResponse = Unirest.post (baseURL4path). ﬁ
header("accept”, Constants.RPPLICATION_JS®HN) . . I (I)
header("-:::'_te:t:t;-'pe", Constants.APPLICATION JSCON) . CllentReqH UnIReSt
body (pavload) .asJ=son() ;

} catch (UnirestException e) {
throw new IPCException("UniRest POST failed for 'processAndStore'",)

f TCDO: Verify returned status code o Location field read to

int statusCode = jsonResponse.getStatus()

/ 5tring body = jsonResponse.getBody() .toString(): retrieve ID Of resource

String path = Constants.BLOODPRESSURE PATH;

xtract the id of the measurement from the Location header

ngy location = jsonResponse.getHeaders() .getFirst("Location™)
Format: URI ending in /bp/{id}, thus= let us split on '/'

/f and pick the last entry

String parts[] = location.split("/"):

String telelbsID = parts[parts.length-1];

return teleCbsID:

CS@AU Henrik Baerbak Christensen 45

/v Restating my Claim

AARHUS UNIVERSITET

» Broker Pattern is as strong as REST Iff
— You simply obey the same fundamental architectural constraints
as REST impose

* Only pass-by-value
— Use the ‘pass objectld’ technique for server -> client ‘pass by reference’

» Pure client-server - no server calling methods on clients

— Design your Remote Roles with distribution in mind
* Not ‘game.getUnitAt(p)’ Chatty interface
« But ‘game.getFullGameState()’ Chunky interface

/v Summary

AARHUS UNIVERSITET
* UR Tunnelling

— Just uses HTTP and web technology/frameworks as the IPC layer in the Broker
* That s : transport network packages to/from client and server

* REST

— Architectural Pattern what deeply exploits HTTPs advantages
— Lightweight with less tool support

— Focus is on performance and scalability because
« True Client-server No callback/observer pattern
« Value passing of information

Y Summary

AARHUS UNIVERSITET

* Broker pattern and REST?

— Only if the OO interfaces/roles are designed so they adhere to
the REST way of architecture
« CRUD on ‘objects’ = resources

« State transitions modelled as ‘transition resources’
— Bit similar to Command pattern objects...

— ... and generally you do not design OO that way...

CS@AU Henrik Baerbak Christensen 48

